## **Data and Text Mining**

Part of Jožef Stefan IPS Programme – ICT2

2019 / 2020

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

# **2019/2020 Logistics:** Course participants

Contacts: <a href="http://kt.ijs.si/petra">http://kt.ijs.si/petra</a> kralj/dmtm2.html

- Data Mining:
  - Nada Lavrač: <u>nada.lavrac@ijs.si</u>, Petra Kralj Novak: <u>petra.kralj.novak@ijs.si</u>, Martin Žnidaršič: <u>martin.znidarsic@ijs.si</u>
- Data prepraration:
  - Bojan Cestnik: bojan.cestnik@temida.si
- Text mining
  - Dunja Mladenić: dunja.mladenic@ijs.si

## Course Schedule – 2019/20

#### **ICT3** and Statistics

### **Every Monday 15-17h, MPŠ**

Mon. 21.10., not 28.10., 4.11., 11.11, 18.11., 25.11., 2.12., 9.12., 16.12., 23.12., 6.1., 13.1., 20.1., 27.1.

#### with exceptions:

- to be communicated later

#### ICT2

### **Every Monday 17-19h, MPŠ**

Mon. 21.10., not 28.10., 4.11.,
11.11, 18.11., 25.11., 2.12., 9.12.,
16.12., 23.12., 6.1., 13.1., 20.1.,
27.1.

#### with following exceptions:

- Wed. 23.10., 17-19 Petra MPŠ
- Wed. 6.11., 17-19 Petra MPŠ
- Wed. 13.11., 17-19 Bojan MPŠ
- Wed. 20.11., 17-19 Bojan MPŠ
- Wed. 27.11., 17-19 Bojan MPŠ
- ... the rest to be communicated

## Data and Text Mining: MSc Credits and Coursework for Data mining part

- Attending lectures
- Attending practical exercises
  - Theory exercises and hands-on (intro to Orange DM toolbox by dr. Petra Kralj Novak)
- Written exam (40%)
- Seminar (60%):
  - Data analysis of your own data (e.g., using Orange for questionnaire data analysis)
  - .... own initiatives are welcome ...

## Data Mining: MSc Credits and coursework

Exam: Written exam (60 minutes) - Theory

Seminar: topic selection + results presentation

- One hour available for seminar topic discussion one page written proposal defining the task and the selected dataset
- Deliver written report + electronic copy (4 pages in Information Society paper format, instructions on the web)
  - Report on data analysis of own data needs to follow the CRISP-DM methodology
  - Presentation of your seminar results (15 minutes each: 10 minutes presentation + 5 minutes discussion)

## **Data Mining: ICT2 Credits and Coursework**

- 20 credits
  - 8 Nada Lavrač and Petra Kralj Novak
  - 4 Bojan Cestnik
  - 8 Dunja Mladenić

## **Course Outline**

#### I. Introduction

- Data Mining and KDD process
- Introduction to Data Mining
- Data Mining platforms

#### **II. Predictive DM Techniques**

- Decision Tree learning
- Bayesian classifier
- Classification rule learning
- Classifier Evaluation

#### III. Regression

#### IV. Descriptive DM

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning Hierarchical clustering

#### V. Relational Data Mining

- RDM and Inductive Logic Programming
- Propositionalization
- Semantic data mining

#### **VI. Advanced Topics**

## Part I. Introduction

- - Data Mining and the KDD process
  - Introduction to Data Mining
  - Data Mining platforms

## **Machine Learning and Data Mining**

- Machine Learning (ML) computer algorithms/machines that learn predictive models from class-labeled data
- Data Mining (DM) extraction of useful information from data: discovering relationships and patterns that have not previously been known, and use of ML techniques applied to solving real-life data analysis problems
- Knowledge discovery in databases (KDD) the process of knowledge discovery

## **Machine Learning and Data Mining**

- Machine Learning (ML) computer algorithms/machines that learn predictive models from class-labeled data
- Data Mining (DM) extraction of useful information from data: discovering relationships and patterns that have not previously been known, and use of ML techniques applied to solving real-life data analysis problems
- Knowledge Discovery in Databases (KDD) the process of knowledge discovery

## **Data Mining and KDD**

- Buzzword since 1996
- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." \*
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

## **KDD Process: CRISP-DM**

KDD process of discovering useful knowledge from data



- KDD process involves several phases:
  - data preparation
  - data mining (machine learning, statistics)
  - evaluation and use of discovered patterns
- Data mining is the key step, but represents only 15%-25% of the entire KDD process

## **Big Data**

- Big Data Buzzword since 2008 (special issue of Nature on Big Data)
  - data and techniques for dealing with very large volumes of data, possibly dynamic data streams
  - requiring large data storage resources, special algorithms for parallel computing architectures.

## The 4 Vs of Big Data



### The FOUR V's of Big Data

Velocity, Variety and Veracity

#### 4.4 MILLION IT JOBS



As of 2011, the global size of data in healthcare was estimated to be



30 BILLION PIECES OF CONTENT are shared on Facebook every month

### **Variety**

DIFFERENT **FORMS OF DATA** 

#### 4 BILLION+ HOURS OF VIDEO are watched on

By 2014, it's anticipated

WEARABLE, WIRELESS

**HEALTH MONITORS** 

there will be

420 MILLION

YouTube each month



are sent per day by about 200 million monthly active users



1 IN 3 BUSINESS don't trust the information

they use to make decisions

economy around \$3.1 TRILLION A YEAR



Poor data quality costs the US

in one survey were unsure of how much of their data was inaccurate

Veracity UNCERTAINTY OF DATA

## **Data Science**

- Data Science buzzword since 2012 when Harvard Business Review called it "The Sexiest Job of the 21st Century"
  - an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining.
  - used interchangeably with earlier concepts like business analytics, business intelligence, predictive modeling, and statistics.

## Data Mining in a Nutshell

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-----|---------------|---------|------------|--------|
| 01      | 17  | myope         | no      | reduced    | NONE   |
| 02      | 23  | myope         | no      | normal     | SOFT   |
| O3      | 22  | myope         | yes     | reduced    | NONE   |
| 04      | 27  | myope         | yes     | normal     | HARD   |
| O5      | 19  | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  |     |               |         |            |        |
| 014     | 35  | hypermetrope  | no      | normal     | SOFT   |
| O15     | 43  | hypermetrope  | yes     | reduced    | NONE   |
| O16     | 39  | hypermetrope  | yes     | normal     | NONE   |
| 017     | 54  | myope         | no      | reduced    | NONE   |
| O18     | 62  | myope         | no      | normal     | NONE   |
| O19-O23 |     |               |         |            |        |
| O24     | 56  | hypermetrope  | yes     | normal     | NONE   |
|         | 1 1 |               |         |            |        |



data

**Given:** transaction data table, relational database, text documents, Web pages

Find: a classification model, a set of interesting patterns

## Data Mining in a Nutshell

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-----|---------------|---------|------------|--------|
| 01      | 17  | myope         | no      | reduced    | NONE   |
| 02      | 23  | myope         | no      | normal     | SOFT   |
| O3      | 22  | myope         | yes     | reduced    | NONE   |
| O4      | 27  | myope         | yes     | normal     | HARD   |
| O5      | 19  | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  |     |               |         |            |        |
| O14     | 35  | hypermetrope  | no      | normal     | SOFT   |
| O15     | 43  | hypermetrope  | yes     | reduced    | NONE   |
| O16     | 39  | hypermetrope  | yes     | normal     | NONE   |
| O17     | 54  | myope         | no      | reduced    | NONE   |
| O18     | 62  | myope         | no      | normal     | NONE   |
| O19-O23 |     |               |         |            |        |
| O24     | 56  | hypermetrope  | yes     | normal     | NONE   |



data

**Given:** transaction data table, relational database, text documents, Web pages

Find: a classification model, a set of interesting patterns





## Why use black-box models

**Given:** the learned classification model (e.g, a linear classifier, a deep neural network, ...)

Find: - the class label for a new unlabeled instance



### **Advantages:**

 best classification results in image recognition and other complex classification tasks

#### **Drawbacks:**

- poor interpretability of results
- can not be used for pattern analysis

## Why learn and use symbolic models

**Given:** the learned classification model (a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance



### **Advantages:**

- use the model for the explanation of classifications of new data instances
- use the discovered patterns for data exploration

#### **Drawbacks:**

- lower accuracy than deep NNs

## Simplified example: Learning a classification model from contact lens data

| Person  | Age   | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-------|---------------|---------|------------|--------|
| 01      | 17    | myope         | no      | reduced    | NONE   |
| 02      | 23    | myope         | no      | normal     | SOFT   |
| O3      | 22    | myope         | yes     | reduced    | NONE   |
| 04      | 27    | myope         | yes     | normal     | HARD   |
| O5      | 19    | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  | •••   |               |         |            |        |
| O14     | 35    | hypermetrope  | no      | normal     | SOFT   |
| O15     | 43    | hypermetrope  | yes     | reduced    | NONE   |
| O16     | 39    | hypermetrope  | yes     | normal     | NONE   |
| 017     | 54    | myope         | no      | reduced    | NONE   |
| O18     | 62    | myope         | no      | normal     | NONE   |
| O19-O23 | • • • |               |         |            | •••    |
| O24     | 56    | hypermetrope  | yes     | normal     | NONE   |

## Pattern discovery in Contact lens data

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-----|---------------|---------|------------|--------|
| 01      | 17  | myope         | no      | reduced    | NONE   |
| 02      | 23  | myope         | no      | normal     | SOFT   |
| O3      | 22  | myope         | yes     | reduced    | NONE   |
| O4      | 27  | myope         | yes     | normal     | HARD   |
| O5      | 19  | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  |     |               |         |            |        |
| O14     | 35  | hypermetrope  | no      | normal     | SOFT   |
| O15     | 43  | hypermetrope  | yes     | reduced    | NONE   |
| O16     | 39  | hypermetrope  | yes     | normal     | NONE   |
| O17     | 54  | myope         | no      | reduced    | NONE   |
| O18     | 62  | myope         | no      | normal     | NONE   |
| O19-O23 |     |               |         |            | •••    |
| O24     | 56  | hypermetrope  | yes     | normal     | NONE   |

#### **PATTERN**

#### Rule:

IF
Tear prod. = reduced

THEN
Lenses =
NONE

## Learning a classification model from contact lens data

| Person  | Age         | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-------------|---------------|---------|------------|--------|
| 01      | young       | myope         | no      | reduced    | NONE   |
| O2      | young       | myope         | no      | normal     | SOFT   |
| O3      | young       | myope         | yes     | reduced    | NONE   |
| 04      | young       | myope         | yes     | normal     | HARD   |
| O5      | young       | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  |             |               |         |            |        |
| O14     | ore-presbyo | hypermetrope  | no      | normal     | SOFT   |
| O15     | ore-presbyo | hypermetrope  | yes     | reduced    | NONE   |
| O16     | ore-presbyo | hypermetrope  | yes     | normal     | NONE   |
| O17     | presbyopic  | myope         | no      | reduced    | NONE   |
| O18     | presbyopic  | myope         | no      | normal     | NONE   |
| O19-O23 |             |               |         |            |        |
| O24     | presbyopic  | hypermetrope  | yes     | normal     | NONE   |

Data Mining



# Decision tree classification model learned from contact lens data



# Learning a classification model from contact lens data

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-----|---------------|---------|------------|--------|
| 01      | 17  | myope         | no      | reduced    | NONE   |
| 02      | 23  | myope         | no      | normal     | SOFT   |
| O3      | 22  | myope         | yes     | reduced    | NONE   |
| 04      | 27  | myope         | yes     | normal     | HARD   |
| O5      | 19  | hypermetrope  | no      | reduced    | NONE   |
| O6-O13  |     |               |         |            |        |
| 014     | 35  | hypermetrope  | no      | normal     | SOFT   |
| O15     | 43  | hypermetrope  | yes     | reduced    | NONE   |
| O16     | 39  | hypermetrope  | yes     | normal     | NONE   |
| 017     | 54  | myope         | no      | reduced    | NONE   |
| O18     | 62  | myope         | no      | normal     | NONE   |
| O19-O23 |     |               |         |            |        |
| O24     | 56  | hypermetrope  | yes     | normal     | NONE   |
|         |     |               |         |            |        |



lenses=NONE ← tear production=red

lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND astigmatism=no

lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

lenses=NONE ←

## Classification rules model learned from contact lens data

```
lenses=NONE ← tear production=reduced
lenses=NONE ← tear production=normal AND
                astigmatism=yes AND
                spect. pre.=hypermetrope
lenses=SOFT ← tear production=normal AND
                astigmatism=no
lenses=HARD ← tear production=normal AND
                astigmatism=yes AND
                spect. pre.=myope
lenses=NONE ←
```

## **Learning from Unlabeled Data**

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses     |
|---------|-----|---------------|---------|------------|------------|
| 01      | 17  | myope         | no      | reduced    | NONE       |
| 02      | 23  | myope         | no      | normal     | SOFT       |
| O3      | 22  | myope         | yes     | reduced    | NONE       |
| 04      | 27  | myope         | yes     | normal     | MARD       |
| O5      | 19  | hypermetrope  | no      | reduced    | NONE       |
| O6-O13  |     |               |         |            | <b>X</b> . |
| O14     | 35  | hypermetrope  | no      | normal     | SOFT       |
| O15     | 43  | hypermetrope  | yes     | reduced    | NONE       |
| O16     | 39  | hypermetrope  | yes     | normal     | NONE       |
| 017     | 54  | myope         | no      | reduced    | NONE       |
| O18     | 62  | myope         | no      | normal     | NONE       |
| O19-O23 |     |               |         |            | / \        |
| O24     | 56  | hypermetrope  | yes     | normal     | NONE       |

Unlabeled data - clustering: grouping of similar instances - association rule learning

## **Learning from Numeric Class Data**

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | LensPrice |
|---------|-----|---------------|---------|------------|-----------|
| 01      | 17  | myope         | no      | reduced    | 0         |
| O2      | 23  | myope         | no      | normal     | 8         |
| O3      | 22  | myope         | yes     | reduced    | 0         |
| 04      | 27  | myope         | yes     | normal     | 5         |
| O5      | 19  | hypermetrope  | no      | reduced    | 0         |
| O6-O13  |     |               |         |            |           |
| O14     | 35  | hypermetrope  | no      | normal     | 5         |
| O15     | 43  | hypermetrope  | yes     | reduced    | 0         |
| O16     | 39  | hypermetrope  | yes     | normal     | 0         |
| 017     | 54  | myope         | no      | reduced    | 0         |
| O18     | 62  | myope         | no      | normal     | 0         |
| O19-O23 |     |               |         |            |           |
| O24     | 56  | hypermetrope  | yes     | normal     | 0         |

Numeric class values – regression analysis

## Task reformulation: Binary Class Values

| Person  | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
|---------|-----|---------------|---------|------------|--------|
| 01      | 17  | myope         | no      | reduced    | NO     |
| 02      | 23  | myope         | no      | normal     | YES    |
| O3      | 22  | myope         | yes     | reduced    | NO     |
| 04      | 27  | myope         | yes     | normal     | YES    |
| O5      | 19  | hypermetrope  | no      | reduced    | NO     |
| O6-O13  |     |               |         |            |        |
| O14     | 35  | hypermetrope  | no      | normal     | YES    |
| O15     | 43  | hypermetrope  | yes     | reduced    | NO     |
| O16     | 39  | hypermetrope  | yes     | normal     | NO     |
| 017     | 54  | myope         | no      | reduced    | NO     |
| O18     | 62  | myope         | no      | normal     | NO     |
| O19-O23 |     |               |         |            |        |
| O24     | 56  | hypermetrope  | yes     | normal     | NO     |

Binary classes (positive vs. negative examples of Target class)

- for Concept learning classification and class description
  - for Subgroup discovery exploring patterns characterizing groups of instances of target class

# Task reformulation: Binary Class and Feature Values

| Person  | Young | Myope | Astigm. | Reuced tea | Lenses |
|---------|-------|-------|---------|------------|--------|
| 01      | 1     | 1     | 0       | 1          | NO     |
| O2      | 1     | 1     | 0       | 0          | YES    |
| O3      | 1     | 1     | 1       | 1          | NO     |
| 04      | 1     | 1     | 1       | 0          | YES    |
| O5      | 1     | 0     | 0       | 1          | NO     |
| O6-O13  |       | •••   |         |            |        |
| O14     | 0     | 0     | 0       | 0          | YES    |
| O15     | 0     | 0     | 1       | 1          | NO     |
| O16     | 0     | 0     | 1       | 0          | NO     |
| 017     | 0     | 1     | 0       | 1          | NO     |
| O18     | 0     | 1     | 0       | 0          | NO     |
| O19-O23 |       | •••   |         |            |        |
| O24     | 0     | 0     | 1       | 0          | NO     |

Binary features and class values

## Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
  - reasoning from properties of a data sample to properties of a population
- DM vs. ML Viewpoint in this course:
  - Data Mining is the application of Machine Learning techniques to hard real-life data analysis problems

## Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
  - reasoning from properties of a data sample to properties of a population
- DM vs. Statistics:
  - Statistics
    - Hypothesis testing when certain theoretical expectations about the data distribution, independence, random sampling, sample size, etc. are satisfied
    - Main approach: best fitting all the available data
  - Data mining
    - Automated construction of understandable patterns, and structured models
    - Main approach: structuring the data space, heuristic search for decision trees, rules, ... covering (parts of) the data space

## **First Generation Data Mining**

### First machine learning algorithms for

Decision tree and rule learning in 1970s and early 1980s
 by Quinlan, Michalski et al., Breiman et al., ...

### Characterized by

- Learning from data stored in a single data table
- Relatively small set of instances and attributes

### Lots of ML research followed in 1980s

- Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
- Extended set of learning tasks and algorithms addressed

## **Second Generation Data Mining**

### Developed since 1990s:

- Focused on data mining tasks characterized by large datasets described by large numbers of attributes
- Industrial standard: CRISP-DM methodology (1997)



## **Second Generation Data Mining**

### Developed since 1990s:

- Focused on data mining tasks characterized by large datasets described by large numbers of attributes
- Industrial standard: CRISP-DM methodology (1997)



- New conferences on practical aspects of data mining and knowledge discovery: KDD, PKDD, ...
- New learning tasks and efficient learning algorithms:
  - Learning predictive models: Bayesian network learning,, relational data mining, statistical relational learning, SVMs, ...
  - Learning descriptive patterns: association rule learning, subgroup discovery, ...

# Second Generation Data Mining Platforms

Orange, WEKA, KNIME, RapidMiner, ...



## Second Generation Data Mining Platforms

Orange, WEKA, KNIME, RapidMiner, ...



- include numerous data mining algorithms
- enable data and model visualization
- like Orange, Taverna, WEKA, KNIME, RapidMiner, also enable complex workflow construction

## **Third Generation Data Mining**

### Developed since 2010s:

- Focused on big data analytics
- Addressing complex data mining tasks and scenarios
- New conferences on data science and big data analytics; e.g., IEEE Big Data, Complex networks, ...
- New learning tasks and efficient learning algorithms:
  - Analysis of dynamic data streams
  - Network analysis,
  - Text mining,
  - Semantic data analysis,
  - Analysis of heterogeneous information networks
  - Analysis of knowledge graphs ...

## Bag-of-Words Data Transformation for Text mining



#### Step 1

BoW vector construction

- 1. BoW features construction
- 2. Table of BoW vectors construction

|   | Document | Word1 | Word2 |   | WordN | Class |
|---|----------|-------|-------|---|-------|-------|
|   | d1       | 1     | 1     | 0 | 1     | NO    |
|   | d2       | 1     | 1     | 0 | 0     | YES   |
|   | d3       | 1     | 1     | 1 | 1     | NO    |
|   | d4       | 1     | 1     | 1 | 0     | YES   |
| , | d5       | 1     | 0     | 0 | 1     | NO    |
|   | d6-d13   |       |       |   |       |       |
|   | d14      | 0     | 0     | 0 | 0     | YES   |
|   | d15      | 0     | 0     | 1 | 1     | NO    |
|   | d16      | 0     | 0     | 1 | 0     | NO    |
|   | d17      | 0     | 1     | 0 | 1     | NO    |
|   | d18      | 0     | 1     | 0 | 0     | NO    |
|   | d19-d23  |       |       |   |       |       |
|   | d24      | 0     | 0     | 1 | 0     | NO    |

| Document | Word1 | Word2 |   | WordN | Class |
|----------|-------|-------|---|-------|-------|
| d1       | 1     | 1     | 0 | 1     | NO    |
| d2       | 1     | 1     | 0 | 0     | YES   |
| d3       | 1     | 1     | 1 | 1     | NO    |
| d4       | 1     | 1     | 1 | 0     | YES   |
| d5       | 1     | 0     | 0 | 1     | NO    |
| d6-d13   |       |       |   |       |       |
| d14      | 0     | 0     | 0 | 0     | YES   |
| d15      | 0     | 0     | 1 | 1     | NO    |
| d16      | 0     | 0     | 1 | 0     | NO    |
| d17      | 0     | 1     | 0 | 1     | NO    |
| d18      | 0     | 1     | 0 | 0     | NO    |
| d19-d23  |       |       |   |       |       |
| d24      | 0     | 0     | 1 | 0     | NO    |



model, patterns, clusters,

. . .

# Text mining: Words/terms as binary features

| Document | Word1 | Word2 |   | WordN | Class |
|----------|-------|-------|---|-------|-------|
| d1       | 1     | 1     | 0 | 1     | NO    |
| d2       | 1     | 1     | 0 | 0     | YES   |
| d3       | 1     | 1     | 1 | 1     | NO    |
| d4       | 1     | 1     | 1 | 0     | YES   |
| d5       | 1     | 0     | 0 | 1     | NO    |
| d6-d13   |       |       |   |       |       |
| d14      | 0     | 0     | 0 | 0     | YES   |
| d15      | 0     | 0     | 1 | 1     | NO    |
| d16      | 0     | 0     | 1 | 0     | NO    |
| d17      | 0     | 1     | 0 | 1     | NO    |
| d18      | 0     | 1     | 0 | 0     | NO    |
| d19-d23  |       |       |   |       |       |
| d24      | 0     | 0     | 1 | 0     | NO    |

Instances = documents Words and terms = Binary features

# Bag-of-Words document representation



## Word weighting for BoW document representation

- In bag-of-words representation each word is represented as a separate variable having numeric weight.
- The most popular weighting schema is normalized word frequency TFIDF:

$$tfidf(w) = tf \cdot \log(\frac{N}{df(w)})$$

- Tf(w) term frequency (number of word occurrences in a document)
- Df(w) document frequency (number of documents containing the word)
- N number of all documents
- Tfidf(w) relative importance of the word in the document

The word is more important if it appears several times in a target document

The word is more important if it appears in less documents

## **Third Generation Data Mining Platforms**

- Orange4WS (Podpečan et al. 2009), ClowdFlows (Kranjc et al. 2012) and TextFlows (Perovšek et al. 2016)
  - are service oriented (DM algorithms as web services)
  - user-friendly HCI: canvas for workflow construction
  - include functionality of standard data mining platforms
    - WEKA algorithms, implemented as Web services
  - Include new functionality
    - relational data mining
    - semantic data mining
    - NLP processing and text mining
  - enable simplified construction of Web services from available algorithms
  - ClowdFlows and TextFlows run in a browser enables data mining, workflow construction and sharing on the web

## **ClowdFlows platform**

## Large algorithm repository

- Relational data mining
- All Orange algorithms
- WEKA algorithms as web services
- Data and results visualization
- Text analysis
- Social network analysis
- Analysis of big data streams

## Large workflow repository

 Enables access to our technology heritage



## **ClowdFlows platform**

- Large repository of algorithms
- Large repository of workflows



### **Example workflow:**

Propositionalization with RSD available in ClowdFlows at http://clowdflows.org/workflow/611/

## **TextFlows**

#### Motivation:

- Develop an online text mining platform for composition, execution and sharing of text mining workflows
- TextFlows platform fork of ClowdFlows.org:
  - Specialized on text mining
  - Web-based user interface
  - Visual programming
  - Big roster of existing workflow (mostly text mining) components
  - Cloud-based service-oriented architecture

## "Big Data" Use Case

- Real-time analysis of big data streams
- Example: semantic graph construction from news streams. http://clowdflows.org/workflow/1729/.



 Example: news monitoring by graph visualization (graph of CNN RSS feeds)

http://clowdflows.org/streams/data/31/1

## **Part I: Summary**

- KDD is the overall process of discovering useful knowledge in data
  - many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD
  - DM takes only 15%-25% of the effort of the overall KDD process
  - employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas, many powerful tools available